
J. Fluid Mech. (1992), vol. 239, p p .  857-670 
Printed in Great Britain 

657 

The nonlinear stability of flows over 
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The weakly nonlinear, high-Reynolds-number triple-deck theory of Smith (1979) is 
applied to Blasius flow over a compliant wall. Attention is concentrated on 
TollmienSchlichting (TS) disturbance waves. We consider wall models of the 
Carpenter-Garrad type, modified to cater for three-dimensional disturbances, and 
allowing for the effects of nonlinear wall curvature. Supercritical equilibrium- 
amplitude states are possible for TS waves in a rigid-wall boundary layer, as is well 
known (see for example Smith 1979; Hall & Smith 1984). It is found that judicious 
choice of wall parameters can dramatically alter the nonlinear stability properties of 
TS waves in the boundary layer over a compliant wall: waves that are linearly 
damped may become nonlinearly unstable. Excellent agreement is obtained with 
rigid-wall results of Hall & Smith (1984). 

1. Introduction 
Little work has been done on the nonlinear stability of compliant-wall flows as yet, 

although the linear stability problem has been much studied in recent years. 
Carpenter & Garrad (1985, 1986) considered the linear stability of two-dimensional 
Tollmien-Schlichting (TS) waves and of the travelling-wave flutter (TWF) class of 
wall-based wave ; they demonstrated that transition delay is theoretically possible, 
providing wall parameters are carefully selected. 

Joslin, Morris & Carpenter (1991) examined the linear stability of three- 
dimensional TS waves over compliant walls of Carpenter-Garrad type : they found 
growth rates to be a maximum at propagation angles of 4Oo-6O0 for the cases studied. 
This is in marked contrast to the rigid-wall case, where the most unstable waves are 
always two-dimensional. 

The nonlinear stability problem has been studied in recent work of the present 
author (Thomas 1990, 1992), wherein resonant-triad interactions were examined. 
Other very recent studies include those by Rotenberry & Staffman (1990) (who 
considered channel flow between compliant walls), Gajjar (1990), Metcalfe, Battistoni 
& Ekeroot (1991) and Joslin & Morris (1991). The latter work will be referred to again 
below. 

In  this work we consider the nonlinear stability of individual two-dimensional and 
three-dimensional TS waves in the boundary layer over compliant walls, from the 
standpoint of triple-deck theory, using the spring-backed plate wall model of 
Carpenter & Garrad (1985). The linear stability of this configuration for two- 
dimensional TS waves has been examined within the triple-deck framework by 

t Present address : Department of Mathematics and Statistics, The University, Newcastle 
upon Tyne NE1 7RU, UK. 
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Mackerrell (1988). The corresponding linear asymptotic theory for TWF wall modes 
(for which different scalings apply) is given in Carpenter & Gajjar (1990). 

Much of the analysis in this paper is an extension of the work of Smith (1979), who 
studied the nonlinear instability of TS waves in the (non-parallel) flat-plate 
boundary layer. He showed that supercritical equilibrium amplitude states obtain in 
the vicinity of the lower branch of the neutral stability curve, and made some 
comparisons with previous work. 

We assume the Reynolds number R is large, so that E + 1, E = R-i. Attention is 
focused on the nonlinear self-interaction of individual TS waves close to the lower 
branch of the marginal stability curve, and systematic asymptotic expansions in E 

yield the triple-deck structure (which is not significantly altered by the presence of 
a compliant wall). Viscous effects are concentrated in the lower deck, it being 
assumed that the critical and wall viscous layers are not distinct. Potential flow 
obtains in the upper deck, and there is no vertical variation in the pressure through 
the main and lower decks. The streamwise (2) and transverse (y)  lengthscales are 
O(e3) ,  and the upper, middle and lower decks are O(e3) ,  O(€*) and O(e5) in height z 
respectively. The frequency o of the TS wave under consideration is relatively high, 
O(eP2),  and so we introduce a scaled frequency !2 = e2w = O(1). 

2. The wall model 
Our wall model represents a spring-backed elastic plate, similar to that of 

Carpenter & Garrad (1985, 1986) and Mackerrell (1988) : its equation of motion takes 
the form 

where V, = (a/ax) i+ ( a / a y ) j ;  we use a coordinate system wherein the streamwise, 
transverse and vertical directions are given by the x-, y- and z-axes respectively (see 
figure 1). This model represents an idealization of the coating used by M. 0. Kramer 
in his series of experiments in the late 1950s and early 1960s (see Carpenter & Garrad 
1985 for an excellent review). The parameters in (2.1) are dimensional : 6 is the wall 
vertical displacement, p m ,  pe and ps  are the densities of the plate, fluid and substrate, 
b is the plate thickness, B is the flexural rigidity of the plate, T is its tension, K is the 
spring stiffness, and 8pe and 8p, are the pressure perturbations acting on the plate 
from above and below. It is assumed that the plate has no lateral movement, i.e. the 
only displacement that can occur is in the vertical direction. We shall not attempt 
to model the dynamics of the substrate material. 

All quantities are now non-dimensionalized using the reference quantities p,, U ,  
and L (some suitable lengthscale), and (2.1) becomes 

where K ,  = K - g ( p e - p s ) ,  7 = = 0(1), and 7 = s-*t = O(1). The Reynolds 
number R is defined as R = U ,  Llv,, where v, is the coefficient of kinematic viscosity. 
We require the non-dimensionalized wall parameters appearing in (2.2) to be O(1);  
this condition is met by the choice 

K ,  Ls3 
I (2.3) c =- T c -  P m b ,  c - B 

- L3p, V, €9 - Lp, q?, €3’ xE pe uz, C , = -  
Pe LE 

as was used by Mackerrell (1988). 
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FIQURE 1 .  The compliant wall model. 

3. Formulation 
The motion of the fluid above the wall is governed by the Navier-Stokes equations 

(3.1) I ux+v,+ w, = 0, 

Ut + UU, + VU, + WU, = -Px+ 1/R (Uxx + U,, + U,,), 

v,+ uvx+ vv,+ wv, = -Py+ 1/R (VX,+ v,,+ v,,), 
w,+ uw,+ vw,+ ww, = -P,+ 1/R (WXX+W,,+ W,,) 

(here in non-dimensional form), with boundary conditions 

U = V = O  and W = y t  at z = q ,  
U - 1  as z - t c o ,  

in order to satisfy no slip at the wall. The flow in the laminar boundary layer adjacent 
to the wall is approximated by the Blasius profile U, (Z), where Z = c 4 z  = O(1). 
The whole triple-deck is mainly driven by the lower deck, in which x = s 3 X ,  y = e3Y, 
z = e6Z1, X ,  Y ,  2, = 0(1) and 

u = eu(x, Y ,  z,,~), v = EV(X, Y,z1,7), 
W = E3w(x, Y ,  21, T ) ,  p = E2P(x, Y ,  7 ) .  (3.3) 

The lower-deck governing equations are therefore 

I u, + v y  + w,, = 0, 

u, + uu, + vu, + WUZl = -P, + uz,z,, 
v, + uv, + vvy + wv,, = P, + vz.,,, , 

(3.4) 

with boundary conditions 

U =  V = O  and W = q ,  at Z,=q, 

U - A(Z, + Q(X,  Y ,  7 ) )  as 2, +. 00, (3.5) 

in order t o  satisfy no slip at the wall and to match with the middle deck. Note that 
in this lower deck we may approximate the Blasius flow by J simele linear profile ; 
h is the skin friction coefficient for Blasius flow, given by h = Ax-;, h = 0.332. .. , and 
Q is a displacement function, which is related to the pressure via the upper-deck 
equations (see below). 
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It is convenient to simplify the wall boundary conditions via the unsteady Prandtl 
transform 

for which 
z,+zp+r, W+Wp+Urx+%+rr ,  (3.6) 

a a a  a a a  a 
-+--r#lu- - - +--r#lx-  - 

a a  
ax ax az,? ay ay az,' a 7 - f 5 ; - p T a Z p .  

(3.7) 

Subscripts X ,  Y ,  7 represent differentiation with respect to  these quantities. The 
above boundary conditions then become 

U =  I.'= W,=O at Zp=O,  U + h ( Z p + & ( X , ~ ) + ~ ( X , Y , ~ ) )  as Zp+co. (3.8) 

I n  the middle deck, we have the expansions 

(3.9) I U = U ,  (x, z) + &(x, Y ,  7) auB/az (x, z), 
w = -2 (aQ/dX) U B  , 
p = €'P(X, Y ,  T ) ,  

and the Blasius profile UB is not further simplified in this main part of the boundary 
layer. Finally, in the upper deck (immediately above the boundary layer), 

I u = 1 +I?@(X,Z,T), 
v = €%(X, Y ,  Z, 7), 

w = €%(X, Y ,  F, 7 ) ,  

p = @ ( X ,  Y, z, 7 ) ,  

(3.10) 

wherein Z =  c 3 z  = O(1). Potential flow obtains here, i.e. V z p  = 0;  p and the 
displacement function &(X, Y ,  7 )  are related by the law 

The Blasius flow U, is equal to unity throughout the upper deck. 
We wish to focus attention on weakly nonlinear disturbances, and to this end a 

second small parameter h is introduced, which characterizes the magnitude of the 
disturbance relative to the basic flow. Now h < 1, and we must also have h % en for 
any positive n in order that the underlying triple-deck structure is not altered. In 
fact, Smith (1979) has shown that this restriction on the minimum permissible size 
of h can be weakened to the condition 6; 4 h < 1. The disturbances are expanded in 
powers of h :  

(U,  v, W,P,Q,P,q) = (hZ,O,O,O,O,O,O)+h(Ui, V,, W ~ , P ~ > Q ~ , ~ J I , V ~ )  
+hZ(Uz,  K, W2,Pz,&zrpz,r~)+h3(U3, &, W3,p3, W3,P3,73). (3.11) 

The leading-order perturbations have periodicity E = exp [i(a,X+pY -sZ 7 ) ]  

(characterizing a single TS wave), and their amplitudes modulate slowly on the 
scale x = hzX. We assume that the x-location is such that x = x1 + h2xz, where x1 
is the neutral position for the disturbance under consideration. I n  other words, x is 
slightly perturbed from its neutral value xl. The skin-friction factor is therefore 
given by h = A, + h2A,. The streamwise wavenumber a is taken as a = a1 + h2a, ; the 
transverse component p is deemed to  be fixed (cf. Hall & Smith 1984). We now apply 
the multiple-scales technique to our system of equations via the transformation 

(3.12) 
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We must solve successively the first-, second- and third-order problems, that is O(h),  
O(hz)  and O(h3). The equations to be solved are as follows: 

O(h) : 
91 (U,, v,, w,) = 0, (3.13) 

where Y 1 ( u , v , w )  = u , + w , + ~ ~ ~ ;  

9 2  (U,, W,,P,) = 0, (3.14) 

where s 2 ( u , w , p )  = u,+A,Z,u,+A,w+p,-uzpZp; and 

93 (vl,P1) = O ,  (3.15) 

where 9 , ( v , p )  = v,+A,Z,vx+p,y-vzpZp; 
O(h2) : 

91 (U2, vz, W2) = 0, 

9 2  CUD %P2) = - (U,  Ul, + v, u,, + w, ~ l , , ~ ~  

( 3 . 1 6 ~ )  

(3.16b) 

9 3 ( & 2 , p 2 )  = - ( u l ~ X + ~ ~ Y + W l v l Z p ) ;  ( 3 . 1 6 ~ )  

(3.17a) 
o ( h 3 ) :  

9 1  ( U 3 , V , ,  w 3 ,  + u,, = 0, 

9 2 C U 3 ,  w,, p3) = - (Ul uz, + uz Ul, + v, uz, + vz Ul, + w, u2zp + w, UlZJ 

3 3 (  v 3 ,  P 3 )  = - ( Ul v,, + U2 v,, + v, v,, + v, v,, + w, v,zp + w, KZ,)  

- A , Z p U l ~ - - P l ~ - h z  W,-ialhzZpUl, (3.17b) 

-AIZ, K2-AzZp 6,. ( 3 . 1 7 ~ )  
The boundary conditions are 

U,= V , =  W , = O  at Z , = O ,  j= 1,2,3,  

~ 1 . 2  N A, ~ 1 . 2  (x, ~ 7 7 )  and u 3  N ~ 1 ~ 3  (x, Y ,  7 )  +A, 4, (x, Y ,  7 )  as zp+ m, 
(3.18) 

together with equations governing the wall-pressure responses at the various orders 
which will be given later. 

There are of course many possible solution procedures: we choose to use the 
method of Smith (1979), which is mathematically elegant (although mistakes are 
easily made). Hall & Smith (1984) also used this method, and cross-checked their 
results using an alternative, more directly numerical approach. 

At first order we just have the linear problem, which has been considered (for two- 
dimensional disturbances) by Mackerrell ( 1988). The problem is considerably 
simplified by making the substitution 

yx, = &+BY, yo(,) = aO+BP, (3.19) 

where y = (a2+p2)i. This reduces the three-dimensional linear problem to an 
equivalent two-dimensional one. The O(h) and O(h2) problems are also somewhat 
facilitated by analogous transformations. One further very helpful change of variable 
is that introduced by Smith (1979) : 

Z, = (Z”-i0) d-t, io = - iQ A-;, A = ia, A,. (3.20) 

The pressure response of the wall a t  O(h) is, from (2.2), 

PI = c,7/l1, c, = Q;CM-y‘:C, -y:C, -CKE,  (3.21) 



662 M .  D. Thomas 

where y1 = (a;+p2)t. The O(h)  disturbance quantities take the forms 

(3.22) I U, = O,((X,Z,)E+c.c., V, = K(8,ZP)E+c.c . ,  W, = %(8,Zp)E+c.c . ,  

P, =P,(.Z)E+c.c., Q1 = &,(X)E+c.c., 

~ , = p , , ( X , ~ ) E + c . c . ,  r l=f i1(X)E+c.c . ,  

where C.C. denotes the complex conjugate and the only dependencies on X ,  Y and 7 

occur in the factor E (which is defined below (3.11)). The $-derivative of the 
transformed velocity component Up) satisfies Airy's equation, 

and so Op) may be written 

where D ( 8 )  is an arbitrary 
argument). 

The linear eigenrelation is 

OF) = D(r?) lo Ai ( q )  dq, 

(3.23) 

(3.24) 

amplitude and Ai is the Airy function (with complex 

(3.25) C, [Gal y1 K -  hf Aih] = a; y;l Aih, 

where k = sc Ai ( t )  dt. In  (3.25) and everywhere below the subscript 0 denotes 
evaluation at 2 = 2,. For the rigid wall Cs+ co, and (3.25) then reduces to  

iiafylK = ha Aih. (3.26) 

We require to  compute real values of 01, satisfying (3.25), for given p, 52: this gives 
us the lower branch of the neutral stability curve for TS waves. 

At second order, we only need consider those parts of the solution having 
periodicities E2 and Eo (that is, the second-harmonic and mean-flow distortion 
components), where E is as previously defined ; thus we let U, = U,, E2 + U,, Eo + . . . , 
etc. Application of (3.19) and (3.20) to  (3.16a-c) and extraction of terms ofperiodicity 
E2 yields the velocity component Ug) : 

1 1  

= iy, D'(8)  A-9 a; 
wherein D,, is an amplitude to be determined, and 

with 

R(2) = - 2-;[2Ai (2) Ai" (2) + Aih Ai' (;)I, 

(3.27) 

(3.28) 

(3.29) 

and 2 = 2$$. The boundary conditions on Ugh yield the amplitude relation D,, = 
HD2, wherein 

iy, d-d [. + Ai' 1; Ai dq,] dq, -$Al( 1/2a1 + a l / y l  C,,) [Fh + Aih Ai,] 

hl dt(2iAi (Eo)'/2iy1 (1/2a1 + a l / y l  CZl) -2-iJz0 Ai (q)  dq 
H =  m , (3.30) 
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with C,, 452:C,-16ytC,-4y,2CT-CKE. (3.31) 

The relevant pressure response of the wall at O(h2) is, from (2 .2) ,  

p,, = C21r21. (3.32) 

The mean-flow distortion is found from applying (3.19) and (3.20) to  (3.16a-c) and 
extracting the zero-periodicity terms, to give 

(3.33) 

f G iyt (L I* ) -@~~ Ai* [210Ai dq- Ai' + Aih + c.c., 1 (3.34) where 

and W,, = 0;  in (3.34) asterisks denote complex conjugation. U!&' is zero a t  2 = .Z0 and 
has a non-zero limiting value a t  infinity. 

At third order, U, = U3, E +  . . . , etc., and we only require that part of the solution 
having periodicity E in order to obtain the amplitude evolution equation. Thus we 
have 

p,( ~ 3 1 ,  4, , ~ 3 1 )  = - ial( u,, 0; + u,, O1) + ip( v,, 0: - v,, Ol - 2 ~ , ,  V f )  
- w,, QZp - W: u,,,~ - u,,,~ - A ,  Z, Dlx -Pl2 -A ,  W; -ia, A, Z, 01, 

- m: KlZp - ml KzZp - A, 2, - ia, A, 2, c. 
(3.35) 

(3.36) 

2 3 ( & 1 , p 3 1 )  = ial(UZl Q-u,, 17-20: Kl)-ip(Cl F?+.v,, I ~ ) - K ~  @zp 

The relevant pressure response of the wall a t  O(h3) is, from (2.2), 

'31 = C ~ ~ 3 1 ~ C N 0 7 1 " 1 ~ ~ C N 1 ~ 7 1 " 1 ~ 2 7 1 " l ~  (3.37) 

where CNo 2ia , (2y tCB+C,) ,  CN1 9 t ( y : C B + C , ) .  (3.38) 

The C,, term in the third-order pressure arises from nonlinear curvature of the wall. 
We could also allow for an O(h3) 'nonlinear spring' correction to the C K E y  term in 
(2 .2) ,  though we have not done so. 

The relationship between the skin-friction and wavenumber perturbations A, and 
01, is found from the O(h2) perturbation of the linear eigenrelation (3.25) : 

a, [ - 2a1( C ,  + By; C,) (( ial)iyl K - A! Aih) + C, [;i&.;iy,1 K + iia! y;l K 

-$ib;iyl Qd;% Ai, - iia;'A! ad;; AiS] - 2a, y;'AH, Aih 

+ a: yi3Af Aih - $ia, y;' A! ad;: Ail] 

+ A, [C, [ -@a; y1 l2A;'d;; Ai, - !A! Ai; - fib! Qd;; AiS] 
4 '  

- i.1" y;'Af Ai; - $iai y;' A! 524;; Ai;] = 0. (3.39) 

The amplitude evolution equation is obtained via a compatibility condition, in the 
usual way. For this, we require the adjoint, JV, of the Airy function, which we shall 
take in the form 

(3.40) 

The equation for U g  is found by applying the transformations (3.19) and (3.20) to 
(3.35) and (3.36), to give 

~ , A ~ Z ^ U ~ ) + + ~ A ,  ~ , , + i y : P , ~ - y , d f ~ ~ ~ ~ = ~ ( z ^ ) ,  (3.41) 
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where G represents the nonlinear forcing terms. This simplifies to 

?,AS --z" U ! & = - G ~ - a , h , A ~ f U , ~ ,  (3.42) 

on using the continuity equation (3.17a). Clearly the homogeneous form of (3.42) is 
identical to the first-order equation (3.23), and the null boundary condition at 
infinity is also the same. Hence, in order for a non-trivial solution to obtain, the 
right-hand side of (3.42) must satisfy a compatibility condition, which can be shown 
to be 

2(:;z ) 

ICOl2CO 1D12D> (3.43) 
Ai, Ai; a,A, C,, 

K Y1 cs 

where i j ,  = C,D(s ) ,  C, = (iy, CJ1 A; Ai; (see Ince 1956, Chapter 9, for a more general 
description of these techniques). The explicit form of Gi is as follows: 

Gi = (2y!A-:[ l,Aidq]*[.+Ai'loAidq] 

- y: A-l  AS* Ai* [ l o F  dq + ln [ Ai' J:: Ai dq] dql] 

- 27,: A-2 4% Ai*' f [ p dq, + [Bi' Jz; Ai dq] dql] d% 
20 20 zn 

+ y3  1 A-i A-b* [ 1' Ai dq d q ,I* [.' + Ai" f Ai dq + Ai' Ail 
i o  zn 20 

+ i y; H 2-f A-i At* Ai * [ Ai (Z) dq - 2 [In Ai dq] * Ai (Z) 

+ 2; A-: A:* Ai*' l: Ai (5) dq dq, 

- 2i A: d-i* [ I0 1; Ai dq dq,]*Ai' (i)] 

+ iy, A-f [.i J'fdq dq, -f f J' Ai dq dq,]) 1DI2D. 

[ i n  

in m i, in 
(3.44) 

Rearrangement of (3.43) gives us the amplitude evolution equation 

Da = ia,D+a11D12D. (3.45) 

It is the sign of Re a, that determines the nonlinear stability properties : Re a, < 0 
permits the existence of supercritical equilibrium amplitude states, whilst if Re a, > 0 
there may be nonlinear instability of a TS wave that is linearly damped. 
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4. Numerical aspects 
The nonlinear coefficient a, must be determined by computational methods. The 

eigenrelation (3.25) must first be solved for real a,, /3 and a;  this is easily achieved 
by elementary iterative methods. The Airy function with complex argument was 
computed using code supplied by Dr A. P. Bassom of Exeter University, and the 
numerous multiple integrals involving functions of Ai (z") contained in a, were 
determined using the trapezium rule. The quantity 6 , ~  appearing in the left-hand 
side of (3.43) has a component which decays linearly, since U, = a;' (y, Up) -BV,) and 
V, - - y;'P Aih2-l as (El + 00 (by Frobenius). To take account of this, we integrate 
this component analytically from the upper limit of numerical integration out to 
infinity, and add this to the numerical result. It was found that 800 steps in the E- 
direction with an outer limit of z" = z", + 12ii gave satisfactory results. The value of a, 
depends on the particular choice of normalization : following Hall & Smith (1984), the 
normalization dU,/dY(O) = i; was employed. This is effected by applying the 
transformation Ai (2) + I'Ai (z"), r = a! A;; [r, Ai, + r;' $K Aii1 Aik1-l. 

The non-dimensional wall parameters defined in (2.3) involve the triple-deck scale 
E ;  for numerical purposes it is necessary to select a value for E ,  i.e. for R. Hence, 
bearing in mind that our formulation is only valid for E 4 1, i.e. for R % 1, we choose 
R = lo6 (following Mackerrell). The Reynolds number based on displacement 
thickness, R,., is related to R by 

R,, = 1.7208 (&):; (4.1) 

we concentrate mainly on the range x < 20, i.e. R,, < 7696. The minimum critical 
value of R,. is known to be about 520 for rigid-wall Blasius flow, and we cannot rely 
on our asymptotic theory to give meaningful results if R,. is not sufficiently larger 
than this. We choose a minimum acceptable value of x of 0.5, which is equivalent to 
R,. = 1217. 

5. Results 
Firstly, we consider the stability of two-dimensional TS waves. For the rigid-wall 

case, Smith (1979) has found that supercritical equilibrium amplitude states obtain 
(in the domain of validity of the triple deck). We herein confirm this, and the 
numerical value for Rea, of -0.362h;a that we have obtained agrees precisely with 
that of Hall & Smith (1984). 

It is not possible to scale out the skin friction A, in the compliant-wall problem 
(basically because of (2.2)), and so all linear and nonlinear solution properties must 
be re-calculated at  each x-location. 

Wall parameter values corresponding to the best of the Kramer coatings 
(according to the results of Carpenter & Garrad 1985), and to the optimized values 
given by Carpenter & Morris (1990), shown in table 1, are of particular interest. The 
latter give marginal stability (at infinite Reynolds number) of the wall-based 
travelling-wave flutter (TWF) and divergence instabilities studied in Carpenter & 
Garrad (1986), at the same time yielding local minima of the TS growth rates, as 
determined from an en calculation (with n chosen as 7). We find that the parameters 
of table 1 (a-c) yield negative values of Re a, as for the rigid wall (figure 2), implying 
the existence of supercritical equilibrium states. We can, however, produce positive 
values by reducing the restoring-force term CKE, and/or introducing wall damping ; 
the damping is modelled by a factor (1 - iy) multiplying C,  and CKE, as was done in 
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FIGURE 3. Effect of wall damping factor 5 on nonlinear coefficient a,, at  various values of Reynolds 
number R8., for parameter set (c) of table 1 : -, 5 = 0;  ---, y = 0.1; ---, 5 = 0.15; ---, 5 = 0.2; 

, 5 = 0.4. 

b(mm) E(MNm-l) K,(GEm-3) C, C, CKE 

(a)  0.735 1.385 0.354 0.05132 48.52 0.4676 
(b) 0.882 1.385 0.295 0.06158 48.52 0.3897 
(c) 1.103 1.385 0.236 0.07701 48.52 0.3118 
( d )  2.0 0.52 0.120 0.1362 17.77 0.1541 

TABLE 1 .  (a+) Three sets of optimized wall parameters b, E, K, as given in Carpenter & Morris 
(1990), and in our non-dimensional forms C,, C,, CKE; (d) values for Kramer's best coating 

the work of Carpenter & Garrad. The stiffer the wall, the more damping is required 
to change the sign of Rea,. Figure 3 shows the effect on an optimized wall of 
increasing 5 (set (c) of table I ) :  with no wall damping present, Real is negative 
everywhere, but as 5 is increased, Re a ,  becomes positive for an ever larger range of 
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FIGURE 4. Effect of wall damping factor C on streamwise wavenumber a, at various values of 
Reynolds number Rd., for parameter set (c) of table 1 : -, 6 = 0; ---, 5 = 0.4. 

x, and progressively larger in magnitude. The maximum level of damping that we 
consider is 6 = 0.4; this is larger than the maximum value of 0.1 used previously by 
Carpenter & Garrad, but is convenient for illustrative purposes, and is not unrealistic 
-see figure 6 of Carpenter & Garrad (1985). It must not be overlooked that wall 
damping has an effect on the linear stability properties of TS waves : this is illustrated 
in figure 4. It will be seen that as 6 increases, the lower-branch linear neutral curve 
moves to smaller values of wavenumber a, (and of frequency Q), which is not a 
favourable change. 

For the Kramer wall (table 1 (d ) ) ,  Re a, can be positive, but only for Reynolds 
numbers R,, smaller than about 1200, which we consider too small for our asymptotic 
theory (see above) ; it changes sign and remains negative as R,, increases - see figure 
2, in which Re a, is plotted for the Kramer parameter values, and also for each of the 
optimized sets of table 1. The extent of the region where Re a, > 0 increases with the 
level of wall damping 6, in a similar fashion to figure 3 - indeed if 5 is sufficiently 
large, then the nonlinearly unstable region can extend into Reynolds-number ranges 
that are valid within our asymptotic theory. Furthermore, it  may be inferred from 
a consideration of the walls actually used in Kramer’s experiments that  some non- 
zero value of 6 is probably appropriate. Hence we may conclude (albeit tentatively, 
since we do not model any substrate dynamics) that Kramer’s wall design did not 
have good nonlinear stability characteristics. 

The effect of wall stiffness is illustrated in figure 5 ,  where the wall parameters are 
as table 1 (c), except for the spring stiffness CKE: with CKE = 0.1, Rea, < 0 
everywhere ; but for a looser wall with CK, = 0.01, Re a, becomes (marginally) 
positive for R,, less than about 5200. However, linearly unstable wall modes will 
certainly be present in the latter case. 

When comparing results for two- and three-dimensional waves, it is desirable to 
make a choice as to whether the transverse wavenumber /3 or the propagation angle 
@ is to be kept fixed as x varies. If p is kept fixed, then as x increases 9 -+ 00 ; but if 
q5 is kept fixed, then /3 decays in a similar fashion to a; the latter option seems most 
sensible to us. It must be remembered, however, that one is not dealing with the 
spatial evolution of a particular wavetrain as it moves downstream: rather, one is 
examining a small perturbation on that particular wave that is linearly neutrally 
stable a t  the given x. 

22 FLM 230 



668 M .  D .  Thomas 

0.0 

-0.1 

-0.2 

-0.3 

Q 

\ 
\ 

B 

a,,  \ 

- 0.4 \ 
\ 

\ 
-0.5 '9 

\ 
9 

-0.6 \ 
\ 

- 0 . 7 1 ,  I I I I I I e I I I I I I I I I I I I I I 'a I 

1000 2000 3000 4000 5000 6000 

RP 
FIGURE 5. Effect of wall spring stiffness C K B  on nonlinear coefficient a,, at various values of 
Reynolds number R8.. Other wall parameters as set ( c )  of table 1. Values of a,, for C K E  = 0.01 are 
plotted with a scale magnification of 100. -, C K E  = 0.01; ---, C K ,  = 0.1. 
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FIGURE 6. Effect of propagation angle $ on nonlinear coefficient a,, at various values of Reynolds 
number R,. ; wall parameters as set ( c )  of table 1, but damping = 0.4: -, $ = 0' ; ---, $ = 20' ; 
---, = 400; ---, = 600;  --_-, $ = 800. 

Turning to three-dimensional waves, then, we find that Re a, is never positive for 
the rigid-wall case, though it  increases to zero as the propagation angle g5 approaches 
90°, as was found by Hall & Smith (1984); indeed, we obtain exact agreement with 
their results. 

For compliant walls, the effect of increasing obliquity is as follows : firstly, to force 
Real negative if it was positive; and subsequently, a t  large obliquity, to make 
Re a, + 0. (It is easy to show rigorously that a, + 0 in the limit b+ co , for both rigid 
and compliant walls.) These properties are demonstrated in figure 6, where we have 
a wall with optimal properties corresponding to  set (c), and having damping factor 

= 0.4. Note, however, that the maximum positive value of Re a, occurs for q5 = 20' 
and not for the two-dimensional case. No instance has been found of Re a, becoming 
positive solely due to obliquity ; indeed if we have Re a, > 0 for a two-dimensional 
wave, then for sufficiently large obliquity the sign will change to negative. Thus for 
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any compliant wall, Re a, can be positive only for $ sufficiently small, and so we may 
infer that the nonlinear regime obliquity tends to be a stabilizing influence on TS 
waves. 

Joslin & Morris (1991) applied the secondary instability theory of Herbert to 
boundary-layer flow over compliant walls. As in the present work, they worked with 
optimized walls so that only the stability of fluid modes need be considered, wall 
modes being marginally stable at all Reynolds numbers. Anisotropic walls were also 
investigated, but their isotropic wall is identical to wall (a )  of table 1 herein. Only two 
values of Reynolds number were considered, however. Attention was focused mainly 
on oblique subharmonic modes, and the temporal stability approach was used in the 
nonlinear regime. This makes comparison with the present work rather difficult, as 
we are concerned with the spatial stability problem, and do not consider subharmonic 
disturbances. However, Joslin & Morris do find that the optimized isotropic wall 
never has an adverse effect on the nonlinear stability of the flow relative to the rigid- 
wall case, and this agrees with our findings for optimized wall parameters. 

6. Conclusions 
We have demonstrated that the presence of a compliant wall can dramatically 

alter the weakly nonlinear stability properties of boundary-layer flow. Nonlinear 
instability of two-dimensional waves can arise through two distinct characteristics of 
the wall: its compliance, and the level of damping. These are known to have 
contrasting effects on the linear stability properties of TS waves; and the linear 
stability of the wall-based TWF modes (not considered herein) is affected in the 
opposite manner to the TS modes. The optimized walls of Carpenter & Morris yield 
only supercritical equilibrium amplitude states, which is very encouraging. 

Nonlinear instability of three-dimensional TS waves is also possible with a suitable 
wall, but is always suppressed for wave propagation angles greater than some critical 
value, and furthermore does not occur for the optimized wall parameter values 
studied : hence, streamwise or nearly streamwise waves are most susceptible to the 
particular form of nonlinear instability we have considered herein. 

The author is grateful to Professor P. W. Carpenter of Warwick University for 
helpful comments on this paper. The work was performed while the author was 
supported as a research fellow on an SERC research grant at the University of 
Exeter. 
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